Our research focuses on computational analysis of
complex natural and social systems. There is a great demand for
targeted computational techniques to extract information and insights
from rich data collections based on clever combinations of human and
machine intelligence. We blend elements from fields such as machine
learning/AI, probabilistic programming, statistical ecology, and data
science, and drive open developer communities that help to translate
latest theoretical advances into accessible methods to inform
modeling, experimentation, and decision-making. For a full list of publications check this page.
Computational and data science: selected examples
Exit time as a measure of ecological resilience
Arani
B,
Nes
E,
Lahti
L,
Carpenter
S &
Scheffer
M.
Science 372(6547),
2021
10.1126/science.aay4895
Quantifying the impact of ecological memory on the dynamics of interacting communities
Khalighi
M,
Sommeria-Klein
G,
Gonze
D,
Faust
K &
Lahti
L.
PLoS Computational Biology 18(6),
2022
10.1371/journal.pcbi.1009396
Wrangling with non-standard data
Mäkelä
E,
Lagus
K,
Lahti
L,
Säily
T,
Tolonen
M,
Hämäläinen
M,
Kaislaniemi
S &
Nevalainen
T.
Proc. Digital humanities in the nordic countries 2612,
2020
PDF
Retrieval and analysis of eurostat open data with the eurostat package
Lahti
L,
Huovari
J,
Kainu
M &
Biecek
P.
The R Journal 9(1),
2017
PDF
More publications in computational and data science
Algorithm 1047: FdeSolver, a Julia package for solving fractional differential equations
Khalighi
M,
Benedetti
G &
Lahti
L.
ACM Transactions on Mathematical Software 50(3),
2024
10.1145/3680280
Epidemic transmission modeling with fractional derivatives and environmental pathogens
Khalighi
M,
Lahti
L &
Ndaïrou
F.
International Journal of Biomathematics
2024
10.48550/arXiv.2305.16689
|
URL
Ebola epidemic model with dynamic population and memory
Ndaïrou
F,
Khalighi
M &
Lahti
L.
Chaos, Solitons and Fractals 170,
2023
10.1016/j.chaos.2023.113361
FdeSolver: A Julia Package for Solving Fractional Differential Equations
Khalighi
M,
Benedetti
G &
Lahti
L.
arXiv arXiv,
2022
10.48550/ARXIV.2212.12550
|
URL
Quantifying the impact of ecological memory on the dynamics of interacting communities
Khalighi
M,
Sommeria-Klein
G,
Gonze
D,
Faust
K &
Lahti
L.
PLoS Computational Biology 18(6),
2022
10.1371/journal.pcbi.1009396
Probabilistic multivariate early warning signals
Laitinen
V &
Lahti
L.
Springer Cham.,
2022
10.1007/978-3-031-15034-0
|
URL
Probabilistic early warning signals
Laitinen
V,
Dakos
V &
Lahti
L.
Ecology & Evolution 11(20),
2021
10.1002/ece3.8123
Exit time as a measure of ecological resilience
Arani
B,
Nes
E,
Lahti
L,
Carpenter
S &
Scheffer
M.
Science 372(6547),
2021
10.1126/science.aay4895
Three-species lotka-volterra model with respect to caputo and caputo-fabrizio fractional operators
Khalighi
M,
Eftekhari
L,
Hosseinpour
S &
Lahti
L.
Symmetry 13,
2020
10.3390/sym13030368
Stability estimation of autoregulated genes under Michaelis-Menten type kinetics
Arani
B,
Mahmoudi
M,
Lahti
L,
González
J &
Wit
E.
Physical Review E 97(6) American Physical Society,
2018
10.1103/PhysRevE.97.062407
|
PDF
A hierarchical ornstein-uhlenbeck model for stochastic time series analysis
Laitinen
V &
Lahti
L.
Advances in intelligent data analysis XVII. Lecture notes in computer science 11191. Springer,
2018
Conference proceedings.
PDF
rOpenGov: Open source ecosystem for computational social sciences and digital humanities
Leo Lahti
J &
Kainu
M.
software,
2013
ICML/MLOSS workshop (Int’l Conf. on Machine Learning - Open Source Software workshop).
URL
Dependency modeling toolkit
Lahti
L,
Tripathi
A &
Huovilainen
O.
software; ICML workshop,
2010
CRAN: dmt
URL
NetResponse (functional network analysis)
Lahti
L,
Gusmao
A &
Huovilainen
O.
software,
2010
R/Bioconductor: netresponse
10.18129/B9.BIOC.NETRESPONSE
|
URL
Pairwise integration of functional genomics data
Huovilainen
O &
Lahti
L.
software,
2010
R/BioConductor: pint
URL
Dependency detection with similarity constraints
Lahti
L,
Myllykangas
S,
Knuutila
S &
Kaski
S.
Proc. MLSP’09 IEEE international workshop on machine learning for signal processing XIX software,
2009
R/Bioconductor: pint
PDF
Associative clustering for exploring dependencies between functional genomics data sets
Kaski
S,
Nikkilä
J,
Sinkkonen
J,
Lahti
L,
Knuuttila
J &
Roos
C.
IEEE/ACM Transactions on Computational Biology and Bioinformatics 2(3),
2005
Special Issue on Machine Learning for Bioinformatics – Part 2
10.1109/TCBB.2005.32
|
PDF
Associative clustering (AC): Technical details
Sinkkonen
J,
Kaski
S,
Nikkilä
J &
Lahti
L.
Helsinki University of Technology,
2005
Publications in Computer and Information Science
PDF
Associative clustering
Sinkkonen
J,
Nikkilä
J,
Lahti
L &
Kaski
S.
Proceedings of the ECML’04, 15th european conference on machine learning Springer,
2004
PDF